First- and Second-Order Hypothesis Testing for Mixed Memoryless Sources

نویسندگان

  • Te Sun Han
  • Ryo Nomura
چکیده

The firstand second-order optimum achievable exponents in the simple hypothesis testing problem are investigated. The optimum achievable exponent for type II error probability, under the constraint that the type I error probability is allowed asymptotically up to ε, is called the ε-optimum exponent. In this paper, we first give the second-order ε-optimum exponent in the case where the null hypothesis and alternative hypothesis are a mixed memoryless source and a stationary memoryless source, respectively. We next generalize this setting to the case where the alternative hypothesis is also a mixed memoryless source. Secondly, we address the first-order ε-optimum exponent in this setting. In addition, an extension of our results to the more general setting such as hypothesis testing with mixed general source and a relationship with the general compound hypothesis testing problem are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision

In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...

متن کامل

A New Method for Characterization of Biological Particles in Microscopic Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and Graph Theory

Introduction Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, automated analyzing methods via microscopic videos are becoming an important step in recent researches. Materials and Methods In the proposed method of this article, a hypothesis testing function is defined to separate biological particles from artifact and noise in captured v...

متن کامل

Variable-Length Resolvability for Mixed Sources and its Application to Variable-Length Source Coding

In the problem of variable-length δ-channel resolvability, the channel output is approximated by encoding a variable-length uniform random number under the constraint that the variational distance between the target and approximated distributions should be within a given constant δ asymptotically. In this paper, we assume that the given channel input is a mixed source whose components may be ge...

متن کامل

A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision

In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...

متن کامل

Second order asymptotics of mixed quantum source coding via universal codes

The simplest example of a quantum information source with memory is a mixed source which emits signals entirely from either one of two memoryless quantum sources with given a priori probabilities. For such a source, we derive the second order asymptotic rates for fixedlength (visible) source coding. This provides the first example of second order asymptotics for a quantum information-processing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018